147 research outputs found

    Towards deterministic equations for Levy walks: the fractional material derivative

    Full text link
    Levy walks are random processes with an underlying spatiotemporal coupling. This coupling penalizes long jumps, and therefore Levy walks give a proper stochastic description for a particle's motion with broad jump length distribution. We derive a generalized dynamical formulation for Levy walks in which the fractional equivalent of the material derivative occurs. Our approach will be useful for the dynamical formulation of Levy walks in an external force field or in phase space for which the description in terms of the continuous time random walk or its corresponding generalized master equation are less well suited

    Coherent backscattering under conditions of electromagnetically induced transparency

    Full text link
    We consider the influence of a resonant control field on weak localization of light in ultracold atomic ensembles. Both steady-state and pulsed light excitation are considered. We show that the presence of a control field essentially changes the type of interference effects which occur under conditions of multiple scattering. For example, for some scattering polarization channels the presence of a control field can cause destructive interference through which the enhancement factor, normally considered to be greater than one, becomes less than one.Comment: Submitted to Journal of Modern Optics, Special Issue: Proceedings of PQE 201

    Fractional Diffusion Equation for a Power-Law-Truncated Levy Process

    Full text link
    Truncated Levy flights are stochastic processes which display a crossover from a heavy-tailed Levy behavior to a faster decaying probability distribution function (pdf). Putting less weight on long flights overcomes the divergence of the Levy distribution second moment. We introduce a fractional generalization of the diffusion equation, whose solution defines a process in which a Levy flight of exponent alpha is truncated by a power-law of exponent 5 - alpha. A closed form for the characteristic function of the process is derived. The pdf of the displacement slowly converges to a Gaussian in its central part showing however a power law far tail. Possible applications are discussed

    Light trapping in high-density ultracold atomic gases for quantum memory applications

    Full text link
    High-density and ultracold atomic gases have emerged as promising media for storage of individual photons for quantum memory applications. In this paper we provide an overview of our theoretical and experimental efforts in this direction, with particular attention paid to manipulation of light storage (a) through complex recurrent optical scattering processes in very high density gases (b) by an external control field in a characteristic electromagnetically induced transparency configuration.Comment: Submitted to Journal of Modern Optics, Special 2010 PQE Issu

    On solutions of a class of non-Markovian Fokker-Planck equations

    Full text link
    We show that a formal solution of a rather general non-Markovian Fokker-Planck equation can be represented in a form of an integral decomposition and thus can be expressed through the solution of the Markovian equation with the same Fokker-Planck operator. This allows us to classify memory kernels into safe ones, for which the solution is always a probability density, and dangerous ones, when this is not guaranteed. The first situation describes random processes subordinated to a Wiener process, while the second one typically corresponds to random processes showing a strong ballistic component. In this case the non-Markovian Fokker-Planck equation is only valid in a restricted range of parameters, initial and boundary conditions.Comment: A new ref.12 is added and discusse

    Relaxation Properties of Small-World Networks

    Full text link
    Recently, Watts and Strogatz introduced the so-called small-world networks in order to describe systems which combine simultaneously properties of regular and of random lattices. In this work we study diffusion processes defined on such structures by considering explicitly the probability for a random walker to be present at the origin. The results are intermediate between the corresponding ones for fractals and for Cayley trees.Comment: 16 pages, 6 figure

    Linear Response in Complex Systems: CTRW and the Fractional Fokker-Planck Equations

    Full text link
    We consider the linear response of systems modelled by continuous-time random walks (CTRW) and by fractional Fokker-Planck equations under the influence of time-dependent external fields. We calculate the corresponding response functions explicitely. The CTRW curve exhibits aging, i.e. it is not translationally invariant in the time-domain. This is different from what happens under fractional Fokker-Planck conditions

    Does strange kinetics imply unusual thermodynamics?

    Full text link
    We introduce a fractional Fokker-Planck equation (FFPE) for Levy flights in the presence of an external field. The equation is derived within the framework of the subordination of random processes which leads to Levy flights. It is shown that the coexistence of anomalous transport and a potential displays a regular exponential relaxation towards the Boltzmann equilibrium distribution. The properties of the Levy-flight FFPE derived here are compared with earlier findings for subdiffusive FFPE. The latter is characterized by a non-exponential Mittag-Leffler relaxation to the Boltzmann distribution. In both cases, which describe strange kinetics, the Boltzmann equilibrium is reached and modifications of the Boltzmann thermodynamics are not required

    Quantum deformation of the angular distributions of synchrotron radiation. Emission of particles in the first excited state

    Full text link
    The exact expressions for the characteristics of synchrotron radiation of charged particles in the first excited state are obtained in analytical form using quantum theory methods. We performed a detailed analysis of the angular distribution structure of radiation power and its polarization for particles with spin 0 and 1/2. It is shown that the exact quantum calculations lead to results that differ substantially from the predictions of classical theory

    Scaling detection in time series: diffusion entropy analysis

    Full text link
    The methods currently used to determine the scaling exponent of a complex dynamic process described by a time series are based on the numerical evaluation of variance. This means that all of them can be safely applied only to the case where ordinary statistical properties hold true even if strange kinetics are involved. We illustrate a method of statistical analysis based on the Shannon entropy of the diffusion process generated by the time series, called Diffusion Entropy Analysis (DEA). We adopt artificial Gauss and L\'{e}vy time series, as prototypes of ordinary and anomalus statistics, respectively, and we analyse them with the DEA and four ordinary methods of analysis, some of which are very popular. We show that the DEA determines the correct scaling exponent even when the statistical properties, as well as the dynamic properties, are anomalous. The other four methods produce correct results in the Gauss case but fail to detect the correct scaling in the case of L\'{e}vy statistics.Comment: 21 pages,10 figures, 1 tabl
    corecore